Opdatering: Jeg har tilføjet konfidensintervaller på alle estimater.
Esperanto
I August 2009 læste jeg en populærvidenskabelig bog, som betød meget for mig. Det var “Det Virkelige Menneske” af Dennis Nørmark og Lars Andreassen, og bogen forklarede mange sider af den menneskelige kultur ved hjælp af biologi og evolutionsteori. Om sprog skrev de:
At sproget er den bedste indikator på, hvem, der er inde, og hvem, der ude, kan måske forklare, hvorfor de fleste sprog indeholder meget kompliceret og som oftest helt overflødige grammatiske regler. […] For dummer du dig i grammatikken, afsløres det øjeblikkeligt, at du ikke hører til gruppen, og jo mere kompliceret et sprog er, jo nemmere bliver det at afsløre afvigere.
Tekststykket italesætter et af de sekundære formål ved sprog, nemlig at afgrænse fællesskabet og afsløre fremmede. Esperanto er et sprog uden det formål. Det er meget nemmere for udefrakommende på grund af dets nemme udtale, logiske grammatik og modulære ordopbygning. Esperanto blev konstrueret i 1887 af LL Zamenhof med formålet at forene og bringe fred til verden. ‘Fred’ er ikke den bedste beskrivelse af de efterfølgende 100 år, men sproget fejler ikke noget. En visionær drøm for mig og de fleste esperantotalende mennesker, er at gøre esperanto til et globalt andetsprog, for det ville gøre verden mere optimal og mere lige. Jeg har kigget på esperantos udbredelse.
Esperanto demografi
Takket være tilgængeligt data fra UEA, esperantujo.directory, edukado, Pasporta Servo, og Lernu! (og Wikipedia) har jeg samlet et datasæt bestående af esperantomedlemstal fra de fleste verden i landen.
befolkning | UEA | Lernu! | esp.dir | pasporto | edukado | nat. org | |
---|---|---|---|---|---|---|---|
Afghanistan | 27.70 | 1 | 48 | 0 | 0 | 0 | 0 |
Albania | 2.80 | 14 | 64 | 0 | 1 | 5 | 33 |
Algeria | 39.20 | 6 | 503 | 1 | 1 | 8 | 0 |
Andorra | 0.08 | 0 | 167 | 0 | 8 | 0 | |
Angola | 21.50 | 2 | 42 | 1 | 0 | 0 | |
Argentina | 41.50 | 29 | 1965 | 27 | 16 | 61 | 140 |
Armenia | 3.00 | 12 | 92 | 0 | 0 | 1 | 27 |
Australia | 23.10 | 40 | 2568 | 23 | 16 | 52 | 130 |
Austria | 8.60 | 44 | 780 | 4 | 8 | 23 | 79 |
… | … | … | … | … | … | … | … |
Zimbabwe | 14.20 | 1 | 30 | 0 | 1 | 1 | 0 |
Se metodesektionen for beskrivelse af kolonnerne. Jeg fittede en model til dette data og brugte den til at estimere den relative frekvens af esperantotalende mennesker i hvert land. For at få de totale antal blev de relative frekvenser skaleret med folketællingerne fra Litauen, Estland, Rusland, New Zealand (men ikke Ungarn). Det samlede antal esperantotalende mennesker i hele verden estimeres til 62983.9 med konfidensinterval på [59077,68176]/[31460,183420](Se Konfidensintervaller for forklaring).


Tallene bag kortene findes i en stor tabel i bunden af postet. Det kan ikke ses på kortet, men Andorra har den højeste koncentration af esperanto. Landene med de største antal esperantotalende mennesker er (rangeret) Brasilien, Frankrig, USA, Tyskland, Rusland, Polen og Spanien.
Modellen antager at antallet af medlemmer af en esperantoorganisation er proportionelt til antallet af esperantotalende mennesker i det pågældende land. Det er ikke altid sandt, fordi organisationerne ikke er lige populære i alle lande. Modellen prøver at modvirke dette ved at tillade en del afvigelse i nogle af organisationerne, uden at det ændrer frekvensen. Hvis alle organisationer derimod er underrepræsenterede i et land, vil den samlede frekvens også blive underestimeret. Ungarn er sådan et tilfælde, for modellen estimerer antallet af esperantotalende mennesker til 1997.5, mens en nylig folketælling fandt, at der var 8397. Afvigelsen skyldes nok, at man kan tage esperanto som valgfag i det ungarnske skolesystem, hvilket producerer esperantotalende ungarere som ikke bruger internationale esperantoorganisationer.
Definitionen af et esperantotalende menneske er en person, som i en folketælling opgiver esperanto som et talt sprog.
Metoder
Model
Jeg vil give en intuition for modellen ved at bruge Litauen som eksempel. Lituaen har medlemstal
pop | UEA | Lernu! | esp.dir | paspo. | edukado | nat. org. | |
---|---|---|---|---|---|---|---|
Lithuania | 3 million | 43 | 5127 | 8 | 13 | 32 | 960 |
Ifølge UEA-kolonnen har Litauen 43 af de i alt 5501 medlemmer af UEA. Det tyder på, at 0.78% af alle esperantotalende mennesker kommer fra Litauen. På den anden side indikerer Lernu!-kolonnen at 2.88% af alle esperantotalende mennesker kommer fra Litauen. I stedet for at hver kolonne giver deres eget estimat, vil vi gerne have et enkelt tal, som tager brug af alle kolonnerne. En måde at få sådan et tal på kunne være gennemsnittet , men så bestemmer Lernu! lige så meget som de andre kolonner, selvom den indeholder langt flere observationer. Et andet valg kunne være gennemsnittet
, men det ligger altid meget tæt på Lernu!-gennemsnittet fordi Lernu! har langt størstedelen af observationerne. Jeg ønsker et estimat imellem disse to. Et, der lytter ekstra til kategorierne med mange observationer og samtidig bruger de andre kategorier.
Det føres ud i livet ved at sige
- Antallet af medlemmer fra organisation
i land
er
hvor
er antallet af indbyggere i land
.
er den relative frekvens af esperantotalende mennesker i land
.
er det totale antal mennesker i organisation
.
er et tal som vælges for at få ligningen til at gå op. Modellen går efter at få dem tæt på 1.
- Hvert lands
vælges sådan at
‘erne ikke er ‘langt væk’ fra 1. Definition af ‘langt væk’ er et valg i modellen.
- ‘langt væk’ defineres sådan at det både opfylder nogle gode matematiske egenskaber og reducerer afstanden mellem
‘erne og 1.
- ‘langt væk’ defineres sådan at det både opfylder nogle gode matematiske egenskaber og reducerer afstanden mellem
- Lad
være det faktiske antal esperantotalende mennesker i land
, hvilket vi kender for Estland, Litauen, Rusland og New Zealand. Ud fra disse tal kan vi udregne antallet af esperantotalende mennesker per enhed af
per indbygger.
- Udregn
for de fire nævnte lande.
- Udregn gennemsnittet
- Antallet af esperantotalende mennesker i land
estimeres til
- Udregn
Rigid matematisk forklaring af modellen
Lad være antallet af medlemmer af organisation
fra land
. Lad
være befolkningstallet for land
. Lad
. Modellen er
hvor der er uafhængighed mellem ‘erne (betinget på
‘erne), imellem
‘erne, og imellem
‘s. Frekvenserne,
, estimeres med
.
I praksis bruger jeg betingelsen på grund af konvergensproblemer.
Konfidensintervallerne blev udregnet med Bayesian bootstrap. I den første type konfidensinterval antoges det, at var kendt. I den anden type konfidensinterval blev det i stedet antaget at folketællingstallene var tilfældige og dermed blev de også ‘bootstrappet’.
Konfidensintervaller
Vi ville ikke blive overraskede, hvis det sande antal af esperanto talende mennesker ikke var præcist 62983.9. Vi tror derimod at det sande antal ligger i et område omkring 62983.9. Et konfidensinterval speciferer sådan et område ved hjælp af statistik. Man må tro på hver værdi i et konfidensinterval uden at være uenig med modellens antagelser.
Jeg udregnede konfidensintervaller på to måder; Den første antager at skaleringsfaktoren er kendt. Skaleringsfaktoren er antallet af esperantotalende mennesker i en folketælling per esperantotalende mennesker ‘på nettet'(se ). Den anden måde antager at skaleringsfaktoren er ukendt og inkluderer usikkerheden af skaleringsfaktoren. De intervaller, som jeg anbefaler at man bruger, har jeg skrevet i fed skrift. Hvor de to konfidensintervaller er identiske, har jeg kun skrevet den ene.
Data
Datasættet er indsamlet fra de følgende hjemmesider.
- UEA er en international interesseorganisation, hvis mål er at sprede esperanto og lighed mellem sprog. De har lagt deres medlemstal på nettet, men det kræver en del klik at indsamle dem.
- lernu.net er den største portal for at lære esperanto. Mange profiler er inaktive og tilhører folk, som kun var interesseret i esperanto kortvarigt. Derfor kan antallet af esperantotalende mennesker godt være lavere end antallet af profiler.
- Esperantujo.directory er et online adressekartotek over esperantotalende mennesker Jeg er ikke i den (endnu)
- Pasporta Servo er en side, hvor man kan tilbyde at lade esperantotalende mennesker bo gratis hos sig. Tallene i kolonnen angiver antallet af værter i det pågældende land.
- Edukado er en anden læringsportal, men mere seriøs end Lernu!.
- National organization sizes er størrelserne på de nationale esperantoorganisationer, som er associeret med UEA.
Der er manglende værdier i datasættet. Andorra har for eksempel en manglende værdi på esperantujo.directory, fordi landet er for småt til at være med på deres kort. Angola har heller ingen værdi for national organization size, fordi de har en national esperanto organisation, hvis medlemstal ikke er angivet på UEA’s hjemmeside. De manglende værdier giver ikke problemer for modellen.
Kilder
Data og mine R-scripts findes på github. Jeg har brugt datamaps.co til at tegne kortene.
Resultater
Nedenunder ses alle lande rangeret efter deres frekvens af esperantotalende mennesker. Frequency er antallet af esperantotalende mennesker per 1 million indbyggere. Total er det samlede antal esperantotalende mennesker. Proportion er hvor stor en andel et land har af den samlede mængde esperantotalende mennesker.
Rank | Frequency | Total | Proportion | |
---|---|---|---|---|
Andorra | 1 [1,2] | 620.03 [277.3,1039.9]/ [180.4,2246.5] | 48.4 [22,81]/ [14,175] | 0.0008 [0.0003,0.0013] |
Lithuania | 2 [1,6] | 249.32 [156.7,482.6]/ [119.2,936.9] | 748 [470,1448]/ [357,2811] | 0.0119 [0.0072,0.0225] |
Iceland | 3 [2,8] | 210.07 [109.7,375]/ [71.5,729.9] | 67.9 [35,121]/ [23,236] | 0.0011 [0.0006,0.0019] |
Hungary | 4 [2,6] | 203.82 [151.1,283.8]/ [98.3,695.9] | 1997.5 [1481,2781]/ [963,6820] | 0.0317 [0.0242,0.0449] |
Luxembourg | 5 [2,10] | 196.82 [93.9,285.1]/ [60.4,681.1] | 112.2 [53,163]/ [34,388] | 0.0018 [0.0008,0.0026] |
New Caledonia | 6 [3,16] | 122.85 [64.1,234.2]/ [47.2,450.3] | 32.9 [17,63]/ [13,121] | 0.0005 [0.0003,0.001] |
Belgium | 7 [6,12] | 109.48 [77.4,135.8]/ [38.1,320.4] | 1237.1 [875,1535]/ [430,3621] | 0.0196 [0.0132,0.0239] |
Finland | 8 [5,15] | 105.89 [69.9,155.2]/ [48.7,331.7] | 582.4 [384,854]/ [268,1824] | 0.0092 [0.006,0.0137] |
France | 9 [5,17] | 104.01 [61.4,132.8]/ [44.2,327.8] | 6906.6 [4078,8816]/ [2933,21763] | 0.1097 [0.067,0.1381] |
Denmark | 10 [5,16] | 97.34 [65.7,145]/ [44.6,321.7] | 554.8 [375,827]/ [254,1834] | 0.0088 [0.0061,0.013] |
Sweden | 11 [8,16] | 91.99 [67.8,117.3]/ [40.2,265.1] | 910.7 [671,1162]/ [398,2625] | 0.0145 [0.0109,0.0183] |
Switzerland | 12 [8,20] | 89.44 [55.6,115.4]/ [36.2,270.9] | 724.4 [451,935]/ [293,2195] | 0.0115 [0.0071,0.0152] |
Netherlands | 13 [7,19] | 84.87 [60.9,115.1]/ [37.2,267.3] | 1442.8 [1036,1956]/ [632,4544] | 0.0229 [0.0159,0.0304] |
Czech Republic | 14 [10,19] | 76.23 [59,90.3]/ [34.9,245.3] | 800.4 [619,948]/ [366,2575] | 0.0127 [0.0095,0.0154] |
Estonia | 15 [7,26] | 74.02 [41.9,117.6]/ [34.3,165.2] | 96.2 [55,153]/ [45,215] | 0.0015 [0.0009,0.0024] |
Norway | 16 [10,23] | 68.99 [50,96.3]/ [30.9,226.5] | 358.7 [260,501]/ [160,1178] | 0.0057 [0.0041,0.0079] |
Slovenia | 17 [10,32] | 60.79 [33.2,95.7]/ [22.3,230.3] | 127.7 [70,201]/ [47,484] | 0.002 [0.0011,0.0032] |
Liechtenstein | 18 [14,62] | 59.67 [11.1,74.2]/ [8.3,199] | 2.2 [0,3]/ [0,7] | 0 [0,0] |
Slovakia | 19 [10,28] | 59.4 [39.2,81.3]/ [23.7,182.7] | 320.8 [212,439]/ [128,986] | 0.0051 [0.0034,0.007] |
Poland | 20 [16,24] | 57.55 [48.9,65.5]/ [28.6,154.9] | 2215.9 [1882,2524]/ [1100,5965] | 0.0352 [0.0294,0.0404] |
Croatia | 21 [14,28] | 55.09 [39,71.3]/ [24.4,175.7] | 231.4 [164,300]/ [102,738] | 0.0037 [0.0026,0.0048] |
Israel | 22 [15,34] | 50.56 [31.2,70.6]/ [20.8,174.8] | 409.5 [253,572]/ [169,1416] | 0.0065 [0.004,0.0091] |
Latvia | 23 [13,35] | 49.01 [30.8,80.3]/ [21.1,159.9] | 98 [62,161]/ [42,320] | 0.0016 [0.0009,0.0025] |
Germany | 24 [19,30] | 47.51 [36.1,58.5]/ [18.6,138.1] | 3871.8 [2942,4769]/ [1519,11256] | 0.0615 [0.0475,0.0754] |
Spain | 25 [20,28] | 47.38 [39.5,54.3]/ [21.2,133.4] | 2198.5 [1835,2519]/ [985,6192] | 0.0349 [0.0292,0.0399] |
New Zealand | 26 [18,33] | 46.42 [31.4,58.1]/ [21.8,141.4] | 208.9 [141,261]/ [98,636] | 0.0033 [0.0022,0.0043] |
Bulgaria | 27 [18,38] | 46.12 [28.1,63.3]/ [19,124] | 332 [202,455]/ [136,893] | 0.0053 [0.0032,0.0072] |
Austria | 28 [22,36] | 38.77 [29.4,48.5]/ [18.1,121] | 333.4 [252,417]/ [155,1041] | 0.0053 [0.004,0.0066] |
Brazil | 29 [24,39] | 36.5 [27.5,47.6]/ [16.3,104.5] | 7314 [5509,9545]/ [3276,20939] | 0.1161 [0.0887,0.148] |
Malta | 30 [16,45] | 35.25 [22.3,66.3]/ [17.5,144.4] | 15 [9,28]/ [7,61] | 0.0002 [0.0002,0.0005] |
Greenland | 31 [26,93] | 34.24 [3.9,42]/ [4.4,98.8] | 1.9 [0,2]/ [0,6] | 0 [0,0] |
Mongolia | 32 [19,63] | 34.05 [11.1,61.6]/ [10.1,118.6] | 95.3 [31,172]/ [28,332] | 0.0015 [0.0005,0.0026] |
Australia | 33 [28,41] | 31.92 [26.2,36.6]/ [15.5,98.7] | 737.4 [605,845]/ [358,2281] | 0.0117 [0.0092,0.0136] |
Bosnia and Herzegovina | 34 [27,47] | 30.7 [18.7,44]/ [13.9,81.5] | 116.7 [71,167]/ [53,310] | 0.0019 [0.0011,0.0027] |
Republic of Serbia | 35 [27,49] | 29.7 [18,40.8]/ [11.8,98.6] | 210.9 [128,290]/ [84,700] | 0.0033 [0.002,0.0046] |
Canada | 36 [30,41] | 29.36 [25,34.7]/ [14.7,88.8] | 1033.4 [880,1220]/ [518,3128] | 0.0164 [0.0141,0.0199] |
Costa Rica | 37 [28,45] | 28.99 [21.7,40.9]/ [12.4,80] | 142.1 [106,200]/ [61,392] | 0.0023 [0.0017,0.0032] |
Uruguay | 38 [29,46] | 28.9 [22,37.9]/ [13.3,94] | 98.3 [75,129]/ [45,320] | 0.0016 [0.0012,0.0021] |
Ireland | 39 [27,48] | 28.88 [19.3,41.8]/ [13.5,91.6] | 132.8 [89,192]/ [62,421] | 0.0021 [0.0014,0.0031] |
Italy | 40 [33,46] | 26.13 [21.1,31.5]/ [12.2,71.1] | 1562.5 [1259,1882]/ [730,4250] | 0.0248 [0.0198,0.0295] |
Togo | 41 [27,63] | 25.9 [10.8,39.3]/ [8.9,79] | 183.9 [77,279]/ [63,561] | 0.0029 [0.0012,0.0045] |
Cyprus | 42 [35,56] | 25.58 [14,30.5]/ [8.8,79.7] | 20.5 [11,24]/ [7,64] | 0.0003 [0.0002,0.0004] |
United Kingdom | 43 [35,47] | 24.5 [21,30.1]/ [13.5,72.3] | 1595.3 [1367,1961]/ [879,4709] | 0.0253 [0.0214,0.0318] |
Albania | 44 [23,62] | 24.26 [11.7,47.6]/ [7.5,80.5] | 67.9 [33,133]/ [21,225] | 0.0011 [0.0005,0.0021] |
Cuba | 45 [34,66] | 22.08 [10.9,31.7]/ [6.8,72.9] | 249.5 [124,358]/ [76,823] | 0.004 [0.002,0.0058] |
Portugal | 46 [34,54] | 20.64 [15.6,30.5]/ [10,67.3] | 212.6 [161,315]/ [103,693] | 0.0034 [0.0025,0.0047] |
Nicaragua | 47 [39,61] | 19.16 [12.5,27.6]/ [8.5,57.6] | 116.9 [76,168]/ [52,352] | 0.0019 [0.0012,0.0027] |
Macedonia | 48 [38,63] | 18.54 [10.9,27.1]/ [8.3,61.5] | 38.9 [23,57]/ [17,129] | 0.0006 [0.0004,0.0009] |
United States of America | 49 [39,60] | 18.34 [12.8,26.2]/ [7.4,63.6] | 5847.1 [4079,8367]/ [2360,20290] | 0.0928 [0.0674,0.1335] |
Hong Kong | 50 [28,84] | 17.81 [5.6,39.5]/ [5,92.4] | 131.8 [42,292]/ [37,684] | 0.0021 [0.0007,0.0047] |
Argentina | 51 [45,62] | 17.58 [12.5,22.4]/ [8,54.5] | 729.6 [520,929]/ [332,2260] | 0.0116 [0.0081,0.0144] |
The Bahamas | 52 [27,73] | 17.39 [7.7,41.1]/ [6.4,78.1] | 6.6 [3,16]/ [2,30] | 0.0001 [0,0.0003] |
Ukraine | 53 [46,61] | 16.19 [13.1,22.6]/ [7.8,51.5] | 694.7 [562,970]/ [336,2209] | 0.011 [0.0087,0.015] |
Armenia | 54 [32,71] | 16.06 [8.1,33.9]/ [5.4,67.8] | 48.2 [24,102]/ [16,203] | 0.0008 [0.0004,0.0016] |
Russia | 55 [48,63] | 15.96 [11.6,19.8]/ [7.8,50.5] | 2298.1 [1667,2852]/ [1130,7276] | 0.0365 [0.0272,0.0468] |
Belarus | 56 [48,63] | 15.71 [11.7,18.4]/ [7.8,48.5] | 149.3 [111,175]/ [74,460] | 0.0024 [0.0018,0.0028] |
Puerto Rico | 57 [41,81] | 15.53 [5.8,26.4]/ [5.2,57.5] | 54.3 [20,92]/ [18,201] | 0.0009 [0.0003,0.0014] |
Chile | 58 [44,69] | 14.45 [8.5,23.3]/ [6.5,53.8] | 254.4 [150,410]/ [114,948] | 0.004 [0.0024,0.0063] |
Colombia | 59 [50,70] | 13.09 [9.2,19.4]/ [6.3,48.3] | 616.7 [433,916]/ [298,2275] | 0.0098 [0.0069,0.0147] |
Benin | 60 [44,90] | 12.5 [4.7,23.6]/ [3.8,46.3] | 132.5 [50,250]/ [40,490] | 0.0021 [0.0008,0.0041] |
Iran | 61 [47,74] | 12.5 [7.7,20.3]/ [4.9,44.4] | 968.7 [598,1571]/ [383,3437] | 0.0154 [0.0095,0.0246] |
Belize | 62 [46,90] | 12.24 [4.2,20.4]/ [2.6,38.8] | 4.7 [2,8]/ [1,15] | 0.0001 [0,0.0001] |
Romania | 63 [53,73] | 11.87 [8.5,16.9]/ [4.7,35.4] | 235.1 [168,335]/ [93,700] | 0.0037 [0.0024,0.0055] |
South Korea | 64 [55,75] | 11.67 [7.6,16]/ [5,38.1] | 585.8 [383,803]/ [251,1911] | 0.0093 [0.0061,0.0129] |
Japan | 65 [43,87] | 11.31 [5,25.5]/ [4,42.6] | 1439.9 [637,3243]/ [513,5420] | 0.0229 [0.0102,0.0489] |
Taiwan | 66 [49,82] | 10.53 [6,18.9]/ [4.2,38.4] | 247.5 [140,444]/ [99,902] | 0.0039 [0.0022,0.0072] |
Cape Verde | 67 [55,115] | 10.45 [1.6,14.2]/ [2.3,34.4] | 5.5 [1,8]/ [1,18] | 0.0001 [0,0.0001] |
East Timor | 68 [43,100] | 10.44 [3.1,23.1]/ [2.7,40.9] | 12.5 [4,28]/ [3,49] | 0.0002 [0.0001,0.0004] |
Venezuela | 69 [57,83] | 9.66 [5.5,14.8]/ [3.4,30.9] | 293.5 [168,449]/ [103,938] | 0.0047 [0.0026,0.0069] |
Burundi | 70 [56,112] | 9.6 [2.2,14.7]/ [2.4,32.7] | 96.9 [22,148]/ [25,331] | 0.0015 [0.0004,0.0024] |
Greece | 71 [61,76] | 9.46 [7.2,11.9]/ [4.5,31.1] | 102.2 [77,129]/ [48,336] | 0.0016 [0.0012,0.0021] |
Mexico | 72 [59,82] | 8.74 [5.7,12.6]/ [3.6,28.1] | 1069 [696,1539]/ [435,3438] | 0.017 [0.0114,0.0249] |
Peru | 73 [54,90] | 8.44 [4.4,14.8]/ [3.2,29.3] | 256.6 [133,451]/ [98,891] | 0.0041 [0.002,0.0072] |
El Salvador | 74 [60,91] | 8.2 [4,12.8]/ [2.6,29.7] | 51.6 [25,81]/ [16,187] | 0.0008 [0.0004,0.0013] |
Georgia | 75 [60,82] | 8.19 [5.5,13.3]/ [3.7,25.6] | 30.3 [20,49]/ [14,95] | 0.0005 [0.0003,0.0008] |
Panama | 76 [55,111] | 8.07 [1.8,16.2]/ [1.5,39.8] | 31.5 [7,63]/ [6,155] | 0.0005 [0.0001,0.001] |
Brunei | 77 [67,125] | 7.97 [1.1,10.1]/ [1.2,24.6] | 3.3 [0,4]/ [0,10] | 0.0001 [0,0.0001] |
Moldova | 78 [66,90] | 7.92 [3.9,10.5]/ [3.2,24.2] | 28.5 [14,38]/ [11,87] | 0.0005 [0.0002,0.0006] |
Dominican Republic | 79 [57,100] | 7.49 [2.7,14.7]/ [2,23.3] | 77.9 [28,153]/ [21,242] | 0.0012 [0.0005,0.0024] |
Montenegro | 80 [63,93] | 6.69 [3.6,11.3]/ [2,24.1] | 4.2 [2,7]/ [1,15] | 0.0001 [0,0.0001] |
Ecuador | 81 [63,92] | 6.66 [3.8,11.4]/ [2.9,26.2] | 104.6 [60,178]/ [46,412] | 0.0017 [0.001,0.0029] |
Senegal | 82 [65,96] | 6.55 [3.2,11.3]/ [2.5,21.5] | 96.9 [48,167]/ [37,318] | 0.0015 [0.0008,0.0027] |
Kazakhstan | 83 [77,93] | 5.34 [3.8,6.9]/ [2.7,16.6] | 90.8 [65,118]/ [45,282] | 0.0014 [0.001,0.0018] |
Guatemala | 84 [72,107] | 5.18 [2.5,8.4]/ [2.6,18.5] | 80.2 [39,131]/ [41,287] | 0.0013 [0.0006,0.0021] |
Nepal | 85 [72,106] | 5.09 [2.4,8.9]/ [1.4,18.2] | 157.9 [74,277]/ [43,563] | 0.0025 [0.0011,0.0045] |
Honduras | 86 [77,110] | 5.04 [2.2,7.3]/ [1.9,14.5] | 40.8 [18,59]/ [15,117] | 0.0006 [0.0003,0.0009] |
Bolivia | 87 [74,107] | 5.03 [2.4,8.1]/ [1.6,18.3] | 55.3 [26,89]/ [18,202] | 0.0009 [0.0004,0.0014] |
United Arab Emirates | 88 [79,106] | 4.69 [2.5,6.8]/ [2.5,16.2] | 46.4 [25,67]/ [25,161] | 0.0007 [0.0004,0.0011] |
Swaziland | 89 [56,117] | 4.54 [1.8,13.7]/ [1.3,24.5] | 5.9 [2,18]/ [2,32] | 0.0001 [0,0.0003] |
Trinidad and Tobago | 90 [79,140] | 4.51 [0.7,6.4]/ [0.7,15.8] | 6.3 [1,9]/ [1,22] | 0.0001 [0,0.0002] |
Vanuatu | 91 [34,113] | 4.39 [2,35.6]/ [1.5,53.6] | 1.2 [1,10]/ [0,15] | 0 [0,0.0002] |
Vietnam | 92 [81,105] | 4.34 [2.4,6.1]/ [1.8,12.9] | 389.7 [218,551]/ [162,1158] | 0.0062 [0.0034,0.0087] |
Maurtitius | 93 [79,141] | 4.27 [0.7,6]/ [0.6,14.8] | 5.5 [1,8]/ [1,19] | 0.0001 [0,0.0001] |
Morocco | 94 [75,118] | 3.81 [1.5,8.8]/ [0.9,17.3] | 125.7 [51,291]/ [31,569] | 0.002 [0.0008,0.0045] |
Tunisia | 95 [81,118] | 3.78 [1.5,6]/ [1.5,11.5] | 42.3 [16,67]/ [17,129] | 0.0007 [0.0003,0.0011] |
Qatar | 96 [85,111] | 3.6 [2,4.9]/ [1.2,13.3] | 9.4 [5,13]/ [3,35] | 0.0001 [0.0001,0.0002] |
Paraguay | 97 [81,134] | 3.57 [1,6.3]/ [0.8,15.6] | 24.3 [7,43]/ [5,106] | 0.0004 [0.0001,0.0007] |
Suriname | 98 [89,132] | 3.54 [0.9,4.4]/ [0.5,10.8] | 1.9 [1,2]/ [0,6] | 0 [0,0] |
Turkey | 99 [86,115] | 3.42 [1.7,5.1]/ [1.1,12.1] | 256.5 [128,385]/ [82,904] | 0.0041 [0.002,0.0062] |
Maldives | 100 [89,141] | 3.37 [0.7,4]/ [0.7,10] | 1.2 [0,1]/ [0,3] | 0 [0,0] |
Lebanon | 101 [89,122] | 3.23 [1.3,4.7]/ [0.9,11.1] | 19.4 [8,28]/ [6,67] | 0.0003 [0.0001,0.0005] |
Tajikistan | 102 [82,130] | 3.18 [1,5.5]/ [0.8,11.7] | 27.4 [9,47]/ [7,100] | 0.0004 [0.0001,0.0007] |
Malaysia | 103 [82,123] | 2.94 [1.2,5.8]/ [0.8,9.9] | 93.6 [39,184]/ [24,314] | 0.0015 [0.0006,0.0029] |
Azerbaijan | 104 [94,117] | 2.78 [1.6,3.6]/ [1.1,9.5] | 27.2 [16,35]/ [11,93] | 0.0004 [0.0002,0.0006] |
South Africa | 105 [86,123] | 2.77 [1.3,5.2]/ [0.9,10.2] | 146.9 [69,273]/ [47,543] | 0.0023 [0.0011,0.0043] |
Bhutan | 106 [96,144] | 2.7 [0.6,3.3]/ [0.5,9.2] | 2.2 [0,3]/ [0,7] | 0 [0,0] |
Madagascar | 107 [93,117] | 2.66 [1.6,4.1]/ [1.1,8.1] | 60.8 [37,95]/ [25,186] | 0.001 [0.0006,0.0015] |
Kyrgyzstan | 108 [95,116] | 2.6 [1.7,3.7]/ [1,8.2] | 15.9 [10,22]/ [6,50] | 0.0003 [0.0002,0.0004] |
Gabon | 109 [97,147] | 2.55 [0.5,3.5]/ [0.4,9.3] | 4.6 [1,6]/ [1,17] | 0.0001 [0,0.0001] |
Algeria | 110 [92,115] | 2.52 [1.8,3.9]/ [1.2,9.4] | 98.8 [70,151]/ [46,368] | 0.0016 [0.0011,0.0023] |
Democratic Republic of the Congo | 111 [94,127] | 2.51 [1.1,3.4]/ [0.8,7.5] | 169.3 [76,232]/ [57,504] | 0.0027 [0.0013,0.0038] |
Fiji | 112 [98,136] | 2.45 [0.8,3]/ [0.5,8.1] | 2.2 [1,3]/ [0,7] | 0 [0,0] |
Djibouti | 113 [99,153] | 2.4 [0.4,3]/ [0.4,7.3] | 2.2 [0,3]/ [0,7] | 0 [0,0] |
Jamaica | 114 [98,155] | 2.27 [0.3,3.4]/ [0.3,7.8] | 6.1 [1,9]/ [1,21] | 0.0001 [0,0.0001] |
Pakistan | 115 [90,136] | 2.24 [0.8,4]/ [0.6,8.4] | 408.3 [137,734]/ [105,1537] | 0.0065 [0.0022,0.0119] |
Kuwait | 116 [96,144] | 2.22 [0.6,3.4]/ [0.5,7.3] | 9.3 [3,14]/ [2,31] | 0.0001 [0,0.0002] |
Namibia | 117 [100,157] | 2.17 [0.3,3.1]/ [0.3,7.6] | 5 [1,7]/ [1,17] | 0.0001 [0,0.0001] |
Central African Republic | 118 [89,154] | 1.89 [0.4,4.9]/ [0.2,7.9] | 9.5 [2,24]/ [1,39] | 0.0002 [0,0.0004] |
Republic of the Congo | 119 [88,138] | 1.64 [0.7,4.6]/ [0.5,10.2] | 7.7 [4,21]/ [2,48] | 0.0001 [0.0001,0.0003] |
Philippines | 120 [102,138] | 1.57 [0.7,2.8]/ [0.6,5.2] | 154.1 [69,271]/ [60,515] | 0.0024 [0.0011,0.0043] |
Jordan | 121 [108,152] | 1.49 [0.4,2.3]/ [0.4,5.3] | 14.6 [4,22]/ [4,52] | 0.0002 [0.0001,0.0004] |
Ghana | 122 [105,139] | 1.42 [0.8,2.6]/ [0.5,5.1] | 40.1 [22,73]/ [14,144] | 0.0006 [0.0003,0.0012] |
Solomon Islands | 123 [116,159] | 1.35 [0.3,1.6]/ [0.3,3.7] | 0.9 [0,1]/ [0,2] | 0 [0,0] |
Guinea Bissau | 124 [117,158] | 1.28 [0.3,1.6]/ [0.4,3.7] | 1.9 [0,2]/ [1,6] | 0 [0,0] |
Thailand | 125 [118,135] | 1.22 [0.8,1.6]/ [0.6,3.6] | 81.9 [56,107]/ [38,242] | 0.0013 [0.0009,0.0017] |
China | 126 [115,135] | 1.2 [0.9,1.7]/ [0.6,3.8] | 1626.6 [1236,2365]/ [778,5185] | 0.0258 [0.02,0.0362] |
Equatorial Guinea | 127 [119,166] | 1.17 [0.2,1.4]/ [0.2,3.1] | 1.4 [0,2]/ [0,4] | 0 [0,0] |
Guyana | 128 [119,161] | 1.16 [0.2,1.4]/ [0.3,3.2] | 0.9 [0,1]/ [0,2] | 0 [0,0] |
Mauritania | 129 [118,169] | 1.07 [0.1,1.4]/ [0.2,3.7] | 4 [0,5]/ [1,14] | 0.0001 [0,0.0001] |
Haiti | 130 [115,163] | 1.03 [0.2,1.8]/ [0.2,3.6] | 11.5 [2,20]/ [3,39] | 0.0002 [0,0.0003] |
Rwanda | 131 [105,152] | 1.02 [0.4,2.8]/ [0.4,4] | 11.9 [5,33]/ [4,46] | 0.0002 [0.0001,0.0005] |
Gambia | 132 [124,158] | 1.01 [0.3,1.3]/ [0.2,2.9] | 1.9 [1,2]/ [0,6] | 0 [0,0] |
Syria | 133 [118,153] | 1 [0.4,1.5]/ [0.4,3.1] | 18.7 [7,27]/ [8,57] | 0.0003 [0.0001,0.0004] |
Botswana | 134 [124,161] | 0.98 [0.2,1.2]/ [0.2,2.9] | 2.2 [0,3]/ [0,6] | 0 [0,0] |
Ivory Coast | 135 [112,150] | 0.98 [0.4,2]/ [0.3,4.2] | 22.2 [10,47]/ [8,95] | 0.0004 [0.0002,0.0008] |
Cambodia | 136 [121,145] | 0.91 [0.6,1.4]/ [0.4,3.1] | 14.3 [10,22]/ [6,49] | 0.0002 [0.0002,0.0004] |
Zimbabwe | 137 [120,147] | 0.85 [0.6,1.3]/ [0.4,2.8] | 12.1 [8,19]/ [6,40] | 0.0002 [0.0001,0.0003] |
Indonesia | 138 [123,150] | 0.84 [0.5,1.2]/ [0.3,2.9] | 209.9 [119,304]/ [77,718] | 0.0033 [0.0018,0.005] |
Saudi Arabia | 139 [118,170] | 0.84 [0.1,1.6]/ [0.1,3.5] | 24.1 [3,46]/ [2,102] | 0.0004 [0.0001,0.0007] |
Niger | 140 [119,151] | 0.81 [0.5,1.5]/ [0.3,3.3] | 16.7 [9,31]/ [7,69] | 0.0003 [0.0001,0.0005] |
Cameroon | 141 [119,151] | 0.79 [0.4,1.4]/ [0.3,3] | 17.9 [9,32]/ [8,69] | 0.0003 [0.0001,0.0005] |
Libya | 142 [127,168] | 0.78 [0.1,1]/ [0.2,2.4] | 5 [1,7]/ [1,15] | 0.0001 [0,0.0001] |
United Republic of Tanzania | 143 [120,165] | 0.7 [0.2,1.4]/ [0.2,2.4] | 38.8 [11,79]/ [11,133] | 0.0006 [0.0002,0.0013] |
Angola | 144 [130,162] | 0.69 [0.2,1.1]/ [0.2,2] | 14.9 [5,23]/ [4,43] | 0.0002 [0.0001,0.0004] |
Uzbekistan | 145 [135,150] | 0.68 [0.5,0.9]/ [0.3,2.2] | 21.6 [16,28]/ [9,68] | 0.0003 [0.0003,0.0004] |
Malawi | 146 [116,166] | 0.67 [0.2,1.6]/ [0.2,3] | 11.3 [3,27]/ [4,51] | 0.0002 [0,0.0004] |
Laos | 147 [134,164] | 0.64 [0.2,0.9]/ [0.1,2.1] | 4.2 [1,6]/ [1,14] | 0.0001 [0,0.0001] |
Egypt | 148 [125,164] | 0.64 [0.2,1.3]/ [0.2,2.8] | 52.5 [14,104]/ [15,229] | 0.0008 [0.0002,0.0017] |
Sri Lanka | 149 [126,159] | 0.58 [0.3,1.2]/ [0.2,2.2] | 12.3 [6,25]/ [5,46] | 0.0002 [0.0001,0.0004] |
Zambia | 150 [122,161] | 0.55 [0.2,1.4]/ [0.1,2.3] | 8.7 [4,22]/ [2,36] | 0.0001 [0.0001,0.0003] |
Uganda | 151 [121,165] | 0.54 [0.2,1.4]/ [0.1,3] | 20 [7,53]/ [5,113] | 0.0003 [0.0001,0.0008] |
Liberia | 152 [141,170] | 0.53 [0.1,0.7]/ [0.1,1.8] | 2.2 [0,3]/ [0,7] | 0 [0,0] |
Kenya | 153 [139,164] | 0.48 [0.2,0.7]/ [0.2,1.5] | 21.1 [9,32]/ [7,65] | 0.0003 [0.0001,0.0005] |
Mali | 154 [145,158] | 0.45 [0.4,0.6]/ [0.2,1.4] | 8.3 [7,10]/ [4,25] | 0.0001 [0.0001,0.0002] |
Oman | 155 [147,171] | 0.42 [0.1,0.5]/ [0.1,1.3] | 1.9 [0,2]/ [0,6] | 0 [0,0] |
Afghanistan | 156 [144,167] | 0.4 [0.1,0.6]/ [0.1,1.4] | 11.2 [4,16]/ [3,38] | 0.0002 [0.0001,0.0002] |
Iraq | 157 [134,168] | 0.4 [0.1,0.9]/ [0.1,1.5] | 14.6 [4,34]/ [3,57] | 0.0002 [0.0001,0.0005] |
Nigeria | 158 [142,163] | 0.39 [0.2,0.6]/ [0.2,1.6] | 67.7 [38,112]/ [27,272] | 0.0011 [0.0006,0.0018] |
Sierra Leone | 159 [148,172] | 0.37 [0.1,0.5]/ [0,1.2] | 2.6 [0,3]/ [0,8] | 0 [0,0.0001] |
Eritrea | 160 [150,172] | 0.36 [0.1,0.4]/ [0.1,1.2] | 1.9 [0,2]/ [0,6] | 0 [0,0] |
Turkmenistan | 161 [154,173] | 0.29 [0.1,0.4]/ [0.1,0.9] | 1.4 [0,2]/ [0,4] | 0 [0,0] |
Chad | 162 [122,173] | 0.28 [0,1.2]/ [0,2.6] | 4.1 [1,18]/ [1,38] | 0.0001 [0,0.0003] |
Burkina Faso | 163 [149,171] | 0.26 [0.1,0.5]/ [0.1,0.8] | 5 [2,10]/ [2,15] | 0.0001 [0,0.0002] |
Yemen | 164 [155,173] | 0.23 [0,0.3]/ [0,0.8] | 6.3 [1,9]/ [1,22] | 0.0001 [0,0.0001] |
Sudan | 165 [157,171] | 0.22 [0.1,0.3]/ [0.1,0.7] | 9 [2,12]/ [2,31] | 0.0001 [0,0.0002] |
Guinea | 166 [159,173] | 0.2 [0.1,0.3]/ [0,0.7] | 2.6 [1,3]/ [0,9] | 0 [0,0.0001] |
Myanmar | 167 [158,168] | 0.2 [0.1,0.3]/ [0.1,0.6] | 11 [8,16]/ [5,31] | 0.0002 [0.0001,0.0002] |
India | 168 [159,170] | 0.17 [0.1,0.3]/ [0.1,0.6] | 219 [134,348]/ [79,755] | 0.0035 [0.002,0.0056] |
Lesotho | 169 [162,173] | 0.16 [0,0.2]/ [0,0.4] | 0.3 [0,0]/ [0,1] | 0 [0,0] |
Mozambique | 170 [165,173] | 0.13 [0,0.2]/ [0,0.5] | 3.5 [1,5]/ [1,12] | 0.0001 [0,0.0001] |
Ethiopia | 171 [167,173] | 0.1 [0.1,0.1]/ [0,0.3] | 10.3 [5,14]/ [4,35] | 0.0002 [0.0001,0.0002] |
Bangladesh | 172 [168,173] | 0.1 [0.1,0.1]/ [0,0.3] | 15.1 [10,19]/ [6,48] | 0.0002 [0.0002,0.0003] |
Somalia | 173 [169,173] | 0.08 [0,0.1]/ [0,0.2] | 0.9 [0,1]/ [0,3] | 0 [0,0] |
South Sudan | 174 [173,174] | 0.02 [0,0]/ [0,0.1] | 0.3 [0,0]/ [0,1] | 0 [0,0] |
Papua New Guinea | 175 [175,175] | 0 [0,0]/ [0,0] | 0 [0,0]/ [0,0] | 0 [0,0] |